metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊3Dic6, C24.34D6, C6.12+ (1+4), (C22×C6)⋊5Q8, C6.6(C22×Q8), (C2×C6).27C24, C4⋊Dic3⋊3C22, C22⋊C4.86D6, C3⋊1(C23⋊2Q8), C12.48D4⋊3C2, C2.6(D4⋊6D6), Dic3⋊C4⋊1C22, (C2×Dic6)⋊2C22, (C22×C4).185D6, C2.8(C22×Dic6), C22.5(C2×Dic6), (C2×C12).127C23, Dic3.D4⋊1C2, C22.69(S3×C23), (C23×C6).53C22, (C2×Dic3).8C23, (C22×C12).71C22, C23.154(C22×S3), (C22×C6).119C23, C6.D4.85C22, (C22×Dic3).76C22, (C2×C6).49(C2×Q8), (C2×C22⋊C4).18S3, (C6×C22⋊C4).18C2, (C2×C4).133(C22×S3), (C2×C6.D4).22C2, (C3×C22⋊C4).97C22, SmallGroup(192,1042)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 584 in 242 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×6], C3, C4 [×12], C22, C22 [×6], C22 [×10], C6, C6 [×2], C6 [×6], C2×C4 [×4], C2×C4 [×14], Q8 [×4], C23, C23 [×6], C23 [×2], Dic3 [×8], C12 [×4], C2×C6, C2×C6 [×6], C2×C6 [×10], C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×2], C22×C4 [×4], C2×Q8 [×4], C24, Dic6 [×4], C2×Dic3 [×8], C2×Dic3 [×4], C2×C12 [×4], C2×C12 [×2], C22×C6, C22×C6 [×6], C22×C6 [×2], C2×C22⋊C4, C2×C22⋊C4 [×2], C22⋊Q8 [×12], Dic3⋊C4 [×8], C4⋊Dic3 [×4], C6.D4 [×8], C3×C22⋊C4 [×4], C2×Dic6 [×4], C22×Dic3 [×4], C22×C12 [×2], C23×C6, C23⋊2Q8, Dic3.D4 [×8], C12.48D4 [×4], C2×C6.D4 [×2], C6×C22⋊C4, C23⋊3Dic6
Quotients:
C1, C2 [×15], C22 [×35], S3, Q8 [×4], C23 [×15], D6 [×7], C2×Q8 [×6], C24, Dic6 [×4], C22×S3 [×7], C22×Q8, 2+ (1+4) [×2], C2×Dic6 [×6], S3×C23, C23⋊2Q8, C22×Dic6, D4⋊6D6 [×2], C23⋊3Dic6
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=d6, ab=ba, dad-1=ac=ca, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >
(2 31)(4 33)(6 35)(8 25)(10 27)(12 29)(13 46)(15 48)(17 38)(19 40)(21 42)(23 44)
(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 46)(14 47)(15 48)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 37 7 43)(2 48 8 42)(3 47 9 41)(4 46 10 40)(5 45 11 39)(6 44 12 38)(13 27 19 33)(14 26 20 32)(15 25 21 31)(16 36 22 30)(17 35 23 29)(18 34 24 28)
G:=sub<Sym(48)| (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(13,46)(15,48)(17,38)(19,40)(21,42)(23,44), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,37,7,43)(2,48,8,42)(3,47,9,41)(4,46,10,40)(5,45,11,39)(6,44,12,38)(13,27,19,33)(14,26,20,32)(15,25,21,31)(16,36,22,30)(17,35,23,29)(18,34,24,28)>;
G:=Group( (2,31)(4,33)(6,35)(8,25)(10,27)(12,29)(13,46)(15,48)(17,38)(19,40)(21,42)(23,44), (13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,46)(14,47)(15,48)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,37,7,43)(2,48,8,42)(3,47,9,41)(4,46,10,40)(5,45,11,39)(6,44,12,38)(13,27,19,33)(14,26,20,32)(15,25,21,31)(16,36,22,30)(17,35,23,29)(18,34,24,28) );
G=PermutationGroup([(2,31),(4,33),(6,35),(8,25),(10,27),(12,29),(13,46),(15,48),(17,38),(19,40),(21,42),(23,44)], [(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,46),(14,47),(15,48),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,37,7,43),(2,48,8,42),(3,47,9,41),(4,46,10,40),(5,45,11,39),(6,44,12,38),(13,27,19,33),(14,26,20,32),(15,25,21,31),(16,36,22,30),(17,35,23,29),(18,34,24,28)])
Matrix representation ►G ⊆ GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 4 | 4 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | S3 | Q8 | D6 | D6 | D6 | Dic6 | 2+ (1+4) | D4⋊6D6 |
kernel | C23⋊3Dic6 | Dic3.D4 | C12.48D4 | C2×C6.D4 | C6×C22⋊C4 | C2×C22⋊C4 | C22×C6 | C22⋊C4 | C22×C4 | C24 | C23 | C6 | C2 |
# reps | 1 | 8 | 4 | 2 | 1 | 1 | 4 | 4 | 2 | 1 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^3\rtimes_3Dic_6
% in TeX
G:=Group("C2^3:3Dic6");
// GroupNames label
G:=SmallGroup(192,1042);
// by ID
G=gap.SmallGroup(192,1042);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,758,675,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=d^6,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations